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If the transition occurs under equilibrium conditions, 
the Clausius-Clapeyron relation with latent heat of 
transformation, L, applies: 

dP / dT = t:.S / t:.V =f(P) = L / Tt:.V, (50) 

where f (P) is a known function. Divide Eq. (48) by (49), 
set the ratio equal tof(P), and solve for dCi.. This yields 

dCi. = (a2J -all)dV / (aI 2 -a22 f). (51) 

Substitution of Eq. (51) into (48) and (49) yields for the 
equilibrium trans ition 

(52) 

and 

dT=dP /f(P). (53) 

Equations (43)-(46) and (51)-(53) comprise the con­
stitutive relations for the mixed phase region when the 
transformation occurs under equilibrium conditions. 
For the irreversible case, Eqs . (43)-(46), (48), (49), 
and (40) comprise the constitutive relations. To use 
them, divide all differentials by dt to form convective 
derivatives. These are then combined with the flow 
equations to form a complete set. Specification of in­
itial and boundary values specifies a problem. 

For the equilibrium transition, Eq. (52), the effect of 
a step increase in pressure at the sample surface is to 
produce a double shock wave like that shown in Fig. 6; 
amplitude of the first shock is the transition pressure 
p~L. 

For the irreversible case, where Eq. (40) applies, ap­
plication of a step P 2 at the sample surface produces a 
shock wave in which the initial step in pressure decays 
toward the transition pressure as it propagates into the 
sample. This is illustrated in Fig. 13. The wave prog­
resses toward the equilibrium form of Fig. 6 at a rate 
determined by Eq. (40). The simplest procedure for 
estimating transition rate is to measure the amplitude 
of the first wave for different specimen thicknesses and 
compare with calculated decay curves. 

If the problem is drastically simplified by assuming 
that the first shock is a discontinuity propagating at 
sound velocity (Duvall, 1964), with t:.V =const, CPl = C/>2, 
VI (P, T) indepe~dent of T, dVI / dP = const, and if Eq. (40) 
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FIG. 13. Pressure profiles for a 20.0 GPa shock wave in iron 
with rate-dependent phase transition: to= 1/3 !ls, 1. t= 0.526 
!ls,2. t=0.812 !ls, 3 . t=1.105 !ls, 4. t=1.554 !ls, t:.V=-0.004 
cms Ig (Horie and Duvall, 1968a) . "Cell index" is a space co­
ordinate in the direction of propagation. 
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is approximated by 

dCi. / dt = -(Ci. - Ci.eq)/ t 0 (54) 

with t o constant and Ci.eq defined by Eq. (42) in the mixed 
phase region, then it follows that amplitude P I of the 
first shock varies with propagation distance as (Horie 
and Duvall, 1968b) 

PI =P2 - (xt:.V/2U~I)t O)dP/dVI VI "'; V TL +t:.V 

=pTL + (P
2 

_pTL) exp(-x/2U~1 )to) 

XVTL+t:.V "'; VI "'; VA> (55) 

where U~I) is propagation speed of the first shock and 
(pTL, V TL) is the point at which the R-H curve in phase 
1 intersects the mixed phase boundary. 

Equation (54) is an oversimplified form of the law for 
irreversible transformation. An improved form has 
been given by Andrews (1970, 1971), and an elegant 
formulation of the entire problem has recently been 
given by Hayes (1975). 

There has been little study of transformation rate ef­
fects in shock-induced transitions. Some authors have 
reported effects of driving pressure on transition pres­
sure (Loree et al., 1966a) . According to Eq. (55), this 
may be a manifestation of finite transformation rate . 
Novikov et al. (1965) have interpreted rise time in the 
third shock in iron (the Plastic II wave) in terms of re­
action rate; but other rate-dependent effects, including 
viscosity, may enter here, as does also the effective 
equilibrium R-H curve in the mixed phase region (cf. 
Sec. II.D). Specific attention to transformation rates 
has been given by Warnes (1967) for antimony, Hayes 
(1974) for KCI, Barker and Hollenbach (1974) and Forbes 
and Duvall (1975) for iron. Their results, discussed in 
Sec. IV, show that transition kinetics can be significant 
and can be measured at the boundary of the mixed phase 
region. This is accomplished by the simple expedient of 
measuring the rate of decay of the Plastic I wave and 
deducing the initial transformation rate, from Eq. (55) 
or some equivalent. Limitations on the technique are 
provided by time resolution of the measurement and by 
size of the shock assembly. This measurement does not 
directly give information about transition rate in the 
mixed phase region. That must be obtained from com­
parisons of measured and calculated wave profiles and 
from the steady profile of the Plastic II wave (Novikov 
et al., 1965). 

G. Properties of the high-density phase from shock data 

The problem is indicated in Fig. 14. The point H has 
been determined experimentally, so pT and vi are mea­
sured directly; internal energy Ei is calculated from 
the Rankine-Hugoniot relation. The equation of state of 
phase 1 is presumed known, so temperature TT and 
entropy si can be calculated. A portion of the measured 
R-H curve, LM, has been identified as lying in phase 
2. The Clausius -Clapeyron coefficient dP / dT is pre­
sumed known. We wish to determine the parameters 
V~ and S~ an? the equation of state of the high-density 
phase. 

On LM, P 2 , V 2 , and E2 are known from the jump con­
ditions . The information required to extend our know-
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FIG. 14. ABCD is isotherm at temperature To; A'C is a me­
tastable extrapolation of the phase 2 isotherm at To; H is the 
intersection of theR-H curve in phase 1 with the mixed phase 
boundary, BQ; HJN is an isotherm through H; HKLM is the 
R-H curve in the mixed phase and phase 2; LM is a section of 
the R-H curve in phase 2 determined by measurements. 

ledge of these parameters into adjacent regions is de­
fined by the thermodynamic differentials 

dE =( -P + TrpCy)dV +CydT, 

dP = -(K/ V) dV +rpCydT, 

dS = rpCydV +CydT/ T, 

(56) 

(57) 

(58) 

where K is the isothermal bulk modulus , r is the Gru­
neisen parameter, Cy is the specific heat at constant 
volume, and p = I / V. If K , r , and Cy are assumed to be 
known functions of V and T, Eqs. (56)-(58) can, in prin­
ciple, be integrated, assuming E, P , V, S, and T to be 
known at some reference point, say L on the R-H curve 
LM. Of these five parameters, only two, SL and T L' 

are unknown. The result of the integration is three 
functions: 

E =E(V, T;SL' TL ), 

p =P(V, T;SL' TL ), 

S =S(V, T;SL ' TL ). 

(59) 

(60) 

(61) 

With attention fixed on the isotherm T = r, set P =pT, 
S =S;:, V = V;:, E =E;:, and invoke the two additional con­
ditions of equilibrium, assuming the phase change to be 
first order: 

(i) Clausius-Clapeyron equation: 

si -sf = (Vi - v[)dP / dT. (62) 

(ii) Equality of the Gibbs functions at the phase bound­
aries: 
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E~ -E'{ = _pT(V[ - V'[) + TT(S[ -S'[). 

Also, from Eq. (60), 

P(V~, TT;SL' TL ) =pT. 

(63) 

(64) 

Equations (62)-(64) can then, in principle, be solved for 
the three unknown parameters SL' TL , Vr, where E;: and 
S[ have been replaced by the functions on the right-hand 
sides of Eqs. (59) and (61). With V;: determined, the 
volume change in transition is given by 

c.v =vi -v'{. 
Of the functions K, r, and C y , the first is dominant in 

determining V~. The measured section, LM, of the 
R-H curve provides information about K. It can be used 
in the following way. Variations in entropy along the 
R-H curve are given by the equation (Duvall and Fowles, 
1963) 

(65) 

where capital "D" denotes variation along the R-H 
curve, and (p 0' V 0) is the point at which the R-H curve 
is centered. Eliminating DS between Eqs. (58) and (65) 
yields 

DT r T= Vo-V DP P -P o =f(V) 
DV + p 2Cy DV + 2Cv . 

(66) 

Combining Eqs. (57) and (66) yields an expression for 
K / V 

K=[pr(VO-V)_I]DP r(P-Po - rc ~ 
V 2 D V + p 2 P y T) . (67) 

If r is known, Eq. (66) can be integrated to give an ex­
pression for T(V), along the R-H curve, which con­
tains the reference temperature T L' Except for this 
constant, Eq. (67) then gives the volume dependence of 
K along the R-H curve. Its temperature dependence is 
made explicit by assuming a formula for C y • 

Several writers have considered the construction of 
complete equations of state for use in shock applications 
(Cowperthwaite, 1966; McQueen et al., 1967; Andrews, 
1970, 1973; Hayes, 1972, 1974; Johnson et aZ., 1974). 
A particularly simple form is obtained if rp and Cy are 
assumed constant. Then the Helmholtz energy A has the 
form 

A(V,T)=EL-PL(V- VL)-SLT-f(V; VL) 

- rpCy( V - VL)(T - T L) 

- CyTln(T/TL) +Cy(T- T L)· 

The internal energy is 

E(V, T)=EL-PL(V- VL)-f(V; VL) 

(68) 

+rpCyTL(V - VL) +Cy(T- T L). (69) 

Pressure and entropy are 

.P(v, T) =PL +f'(V; VL) + rpCy(T- T L), (70) 

sty, T) =S L + Cy 1n(T/TL) + rpCy(V - VL). (71) 

Substitution of these equations into Eqs. (62)-(64) 
yields the following set to be solved for T L , SL, and Vi: 

f'(V[; vL)+rpCy(TT_TL)=pT-PL (72) 


